

"تقنية إدارة عمليات التعلم الآلي ونشر النماذج: دليل شامل"

المدة: 5 يوم

اللغة: ar

كود الكورس: PI2-110

هدف الكورس

بحلول نهاية هذه الدورة، سيمكن المشاركون من:

- فهم المبادئ والأهداف الرئيسية لـ MLOps.
- تصميم سير عمل ML قابلة للتوسيع من التدريب إلى النشر.
- تنفيذ أنابيب CI/CD لنماذج التعلم الآلي.
- اختيار استراتيجيات النشر المناسبة استناداً إلى احتياجات العمل.
- مراقبة أداء النموذج وكشف انزياح المفهوم/البيانات.
- تلقين إعادة التدريب والتحكم في الإصدار بشكل آلي في بيئات الإنتاج.
- التعاون عبر فرق وظيفية متعددة لتقديم حلول ML بشكل مستمر.

الجمهور

هذه الدورة مثالية ل:

- مهندسي تعلم الآلة وعلماء البيانات.
- مهندسي DevOps والبرمجيات الذين يعملون مع حلول الذكاء الاصطناعي.
- قادة المشاريع التقنية ومحترفو MLOps.
- فرق عمليات تكنولوجيا المعلومات والبنية التحتية الداعمة لمبادرات تعلم الآلة.
- مديري المنتجات والمستشارين التقنيين في مشاريع الذكاء الاصطناعي.
- المطوريين الذين ينتقلون إلى أدوار عمليات الذكاء الاصطناعي.

منهجية التدريب

يجمع هذا الدورة بين التعليم الفني والمخترابات العملية، واستعراض الأكواذ، ودراسات الحالة الواقعية. سيقوم المشاركون ببناء نماذج خطوط CI/CD، ونشر النماذج باستخدام أدوات مفتوحة المصدر، وممارسة مراقبة وتحديث النماذج الإنتاجية. يتم التركيز على التعاون بين الفريق، وقابلية التوسيع في البنية التحتية، وقابلية تكرار النتائج.

مع استمرار تطور التعلم الآلي (ML) من البحث التجريبي إلى الإنتاج على نطاق واسع، يزداد الحاجة إلى نشر قوي ومراقبة وإدارة الحياة الدورية بشكل كبير. يقدم هذا الدورة للمشاركين في MLOps - مجموعة من الممارسات التي تجسر الفجوة بين علم البيانات والعمليات لضمان أن النماذج ليست دقيقة فقط ولكنها قابلة للتوصير وموثوقة وقابلة للصيانة في بيئات العمل الحقيقية.

سيستكشف المشاركون سير العمل الكامل للتعلم الآلي مع التركيز على استراتيجيات النشر، وأنابيب CI/CD، وتأطير البنية التحتية، وحكم النموذج. تؤكد الدورة على التعاون بين علماء البيانات والمهندسين وفرق DevOps لبناء أنظمة ML جاهزة للإنتاج التي تكون فعالة وقابلة للتتابع وقابلة للتكييف.

محتوى الكورس والمخطط الزمني

Section 1: Introduction to MLOps and Production ML

- .What is MLOps? Definitions, components, and business value •
- .Comparison of traditional DevOps vs MLOps •
- .The ML lifecycle: from data ingestion to retraining •
- .Challenges in deploying ML models at scale •
- .Benefits of automation and monitoring in ML workflows •
- .Key tools and platforms in the MLOps ecosystem (MLflow, Kubeflow, DVC, etc) •
- .Case study: MLOps in a real-world product environment •

Section 2: Building and Automating ML Pipelines

- .Designing reproducible ML workflows using pipeline tools •
- .Data validation, feature engineering, and model training pipelines •
 - .Experiment tracking and parameter logging •
- .Version control for datasets, code, and models •
- .Using MLflow or DVC for tracking and reproducibility •
- .Containerization using Docker for ML applications •
 - .Best practices for modular pipeline design •

Section 3: Model Deployment Strategies and Infrastructure

- .Deployment types: batch, real-time (online), edge, and hybrid •
- .Model serving tools: TensorFlow Serving, TorchServe, FastAPI, BentoML •
 - .API integration and microservice architecture •
- .Model packaging and container orchestration with Kubernetes •
 - .Choosing the right cloud or on-prem environment •
- .Hands-on example: deploying a model via REST API •
- .Rollout strategies: blue-green, canary, and shadow deployments •

Section 4: Monitoring, Testing, and Model Governance

- .Importance of monitoring models in production •
- .Key metrics: latency, prediction accuracy, drift detection •
- .Automating testing: unit tests, integration tests for ML models •
 - .Alerting and rollback strategies for failed deployments •
- .Model governance: auditing, compliance, and reproducibility •
 - .Toolkits for drift detection and quality assurance •
- .Logging and observability frameworks for ML services •

Section 5: CI/CD for Machine Learning

- .Continuous integration and delivery pipelines for ML •
- .Integrating Git, Jenkins, GitHub Actions, or GitLab CI •
- .Automating retraining and redeployment on new data •
- .Scheduling and orchestration using Airflow or Prefect •
 - .Building end-to-end automated workflows •
- .Cross-functional collaboration and workflow ownership •
- .Scaling MLOps for multiple models and business use cases •

تفاصيل الشهادة

عند إتمام هذه الدورة التدريبية بنجاح، سيحصل المشاركون على شهادة إتمام التدريب من Holistique Training. وبالنسبة للذين يحضرون ويكملون الدورة التدريبية عبر الإنترنت، سيتم تزويدهم بشهادة إلكترونية (e-Certificate) من Holistique Training.

وخدمة اعتماد التطوير المهني (BAC) معتمدة من المجلس البريطاني للتقييم Holistique Training شهادات ISO 29993 أو ISO 21001 كما أنها معتمدة وفق معايير (CPD) المستمر.

لهذه الدورة من خلال شهادتنا، وستظهر هذه النقاط على شهادة إتمام (CPD) يتم منح نقاط التطوير المهني المستمر واحدة عن كل ساعة CPD يتم منح نقطة CPD ووفقاً لمعايير خدمة اعتماد Holistique Training. التدريب من

لأي دورة واحدة نقدمها حالياً CPD حضور في الدورة. ويمكن المطالبة بحد أقصى قدره 50 نقطة

التصنيفات

الذكاء الاصطناعي وإدارة البيانات، تطبيقات تكنولوجيا المعلومات والكمبيوتر، التكنولوجيا

مقالات ذات صلة

Discover the top 15 data scientist skills you need to succeed in 2025, including technical, communication, cloud, and soft skills—plus expert tips on how to master them